# UNION and UNION ALL The `UNION` clause combines results from multiple `SELECT` statements. It automatically eliminates duplicate rows, delivering a distinct dataset crucial for consolidated reporting or unique data identification across different query outputs. For effective use, each `SELECT ` statement within a `UNION` operation **must**: * Select the identical count of columns. * Include the same number of column expressions. * Maintain the same data type order across corresponding columns. Column lengths do not need to match . ## The UNION Clause Consider the following structures: The `customers` table: | id | name | age | address | salary | |----|----------|-----|-----------|----------| | 1 | Ramesh | 32 | Ahmedabad | 2000.00 | | 2 | Khilan | 25 | Delhi | 1500.00 | | 3 | kaushik | 23 | Kota | 2000.00 | | 4 | Chaitali | 25 | Mumbai | 6500.00 | | 5 | Hardik | 27 | Bhopal | 8500.00 | | 6 | Komal | 22 | MP | 4500.00 | | 7 | Muffy | 24 | Indore | 10000.00 | The `orders` table: | oid | date | customer_id | amount | |-----|---------------------|-------------|--------| | 102 | 2009-10-08 00:00:00 | 3 | 3000 | | 100 | 2009-10-08 00:00:00 | 3 | 1500 | | 101 | 2009-11-2 0 00:00:00 | 2 | 1560 | | 103 | 2008-05-20 00:00:00 | 4 | 2060 | Combining results with `UNION`: ```sql SELECT id, name, amount, date FROM customers LEFT JOIN orders ON customers.id = orders.customer_id UNION SELECT id, name, amount, date FROM customers RIGHT JOIN orders ON customers.id = orders.customer_id; ``` Resulting data set: | id | name | amount | date | |------|----------|--------|---------------------| | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009- 11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00 :00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | ## The UNION ALL Clause The `UNION ALL` operator concatenates the result sets of two or more `SELECT ` statements. It explicitly includes all rows, including duplicates, which is critical when the frequency of specific data points is important. The requirements for column count, expressions, and data types mirroring across `SELECT` statements remain identical to `UNION`. Using the same `customers` and `orders` tables: Combining results with `UNION ALL`: ```sql SELECT id, name, amount, date FROM customers LEFT JOIN orders ON customers.id = orders.customer _id UNION ALL SELECT id, name, amount, date FROM customers RIGHT JOIN orders ON customers.id = orders.customer_id; ``` Resulting data set: | id | name | amount | date | |------|----------|--------|---------------------| | 1 | Ramesh | NULL | NULL | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 | | 5 | Hardik | NULL | NULL | | 6 | Komal | NULL | NULL | | 7 | Muffy | NULL | NULL | | 3 | kaushik | 3000 | 2009-10-08 00:00:00 | | 3 | kaushik | 1500 | 2009-10-08 00:00:00 | | 2 | Khilan | 1560 | 2009-11-20 00:00:00 | | 4 | Chaitali | 2060 | 2008-05-20 00:00:00 |